
Introduction

1.1 What is a group?

Definition 1.1: If G is a nonempty set, a binary operation µ on G
is a function µ : G×G→ G.

For example + is a binary operation defined on the integers Z. Instead
of writing +(3, 5) = 8 we instead write 3 + 5 = 8. Indeed the binary
operation µ is usually thought of as multiplication and instead of µ(a, b)
we use notation such as ab, a + b, a ◦ b and a ∗ b. If the set G is a finite
set of n elements we can present the binary operation, say ∗, by an n by
n array called the multiplication table. If a, b ∈ G, then the (a, b)–entry of
this table is a ∗ b.

Here is an example of a multiplication table for a binary operation ∗ on the
set G = {a, b, c, d}.

∗ a b c d
a a b c a
b a c d d
c a b d c
d d a c b



Note that (a ∗ b) ∗ c = b ∗ c = d but a ∗ (b ∗ c) = a ∗ d = a.

Definition 1.2: A binary operation ∗ on set G is associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c ∈ G.

Subtraction− on Z is not an associative binary operation, but addition + is.
Other examples of associative binary operations are matrix multiplication
and function composition.

A set G with a associative binary operation ∗ is called a semigroup. The
most important semigroups are groups.

Definition 1.3: A group (G, ∗) is a set G with a special element e
on which an associative binary operation ∗ is defined that satisfies:

1. e ∗ a = a for all a ∈ G;
2. for every a ∈ G, there is an element b ∈ G such that b ∗ a = e.

Example 1.1: Some examples of groups.

1. The integers Z under addition +.

2. The set GL2(R) of 2 by 2 invertible matrices over the reals with
matrix multiplication as the binary operation. This is the general
linear group of 2 by 2 matrices over the reals R.

3. The set of matrices

G =

{
e =

[
1 0
0 1

]
, a =

[
−1 0

0 1

]
, b =

[
1 0
0 −1

]
, c =

[
−1 0

0 −1

]}
under matrix multiplication. The multiplication table for this group
is:

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

4. The non-zero complex numbers C is a group under multiplication.



5. The set of complex numbers G = {1, i,−1,−i} under multiplication.
The multiplication table for this group is:

∗ 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

6. The set Sym (X) of one to one and onto functions on the n-element set
X, with multiplication defined to be composition of functions. (The
elements of Sym (X) are called permutations and Sym (X) is called
the symmetric group on X. This group will be discussed in more
detail later. If α ∈ Sym (X), then we define the image of x under α to
be xα. If α, β ∈ Sym (X), then the image of x under the composition
αβ is xαβ = (xα)β .)

1.1.1 Exercises

1. For each fixed integer n > 0, prove that Zn, the set of integers modulo
n is a group under +, where one defines a+ b = a+ b. (The elements
of Zn are the congruence classes a, a ∈ Z.. The congruence class ā is

{x ∈ Z : x ≡ a (modn)} = {a+ kn : k ∈ Z}.

Be sure to show that this addition is well defined. Conclude that for
every integer n > 0 there is a group with n elements.

2. Given integer n > 0 let G be the subset of complex numbers of the

form e
2kπ
n i, k ∈ Z. Show that G is a group under multiplication. How

many elements does G have?



Some properties are unique.

Lemma 1.2.1. If (G, ∗) is a group and a ∈ G, then a∗a = a implies a = e.

Proof. Suppose a ∈ G satisfies a∗a = a and let b ∈ G be such that b∗a = e.
Then b ∗ (a ∗ a) = b ∗ a and thus

a = e ∗ a = (b ∗ a) ∗ a = b ∗ (a ∗ a) = b ∗ a = e

Lemma 1.2.2. In a group (G, ∗)

(i) if b ∗ a = e, then a ∗ b = e and

(ii) a ∗ e = a for all a ∈ G

Furthermore, there is only one element e ∈ G satisfying (ii) and for all
a ∈ G, there is only one b ∈ G satisfying b ∗ a = e.

Proof. Suppose b ∗ a = e, then

(a ∗ b) ∗ (a ∗ b) = a ∗ (b ∗ a) ∗ b = a ∗ e ∗ b = a ∗ b.

Therefore by Lemma 1.2.1 a ∗ b = e.

Suppose a ∈ G and let b ∈ G be such that b ∗ a = e. Then by (i)

a ∗ e = a ∗ (b ∗ a) = (a ∗ b) ∗ a = e ∗ a = a

Now we show uniqueness. Suppose that a ∗ e = a and a ∗ f = a for all
a ∈ G. Then

(e ∗ f) ∗ (e ∗ f) = e ∗ (f ∗ e) ∗ f = e ∗ f ∗ e = e ∗ f

Therefore by Lemma 1.2.1 e ∗ f = e. Consequently

f ∗ f = (f ∗ e) ∗ (f ∗ e) = f ∗ (e ∗ f) ∗ e = f ∗ e ∗ e = f ∗ e = f

and therefore by Lemma 1.2.1 f = e. Finally suppose b1 ∗ a = e and
b2 ∗ a = e. Then by (i) and (ii)

b1 = b1 ∗ e = b1 ∗ (a ∗ b2) = (b1 ∗ a) ∗ b2 = e ∗ b2 = b2



Definition 1.4: Let (G, ∗) be a group. The unique element e ∈ G
satisfying e ∗ a = a for all a ∈ G is called the identity for the group
(G, ∗). If a ∈ G, the unique element b ∈ G such that b ∗ a = e is called
the inverse of a and we denote it by b = a−1.

If n > 0 is an integer, we abbreviate a ∗ a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n times

by an. Thus a−n =

(a−1)n = a−1 ∗ a−1 ∗ a−1 ∗ · · · ∗ a−1︸ ︷︷ ︸
n times

Let (G, ∗) be a group where G = {g1, g2, . . . , gn}. Consider the multiplica-
tion table of (G, ∗).

gj

gi

gi ∗ gj

Let [x1 x2 x3 · · · xn] be the row labeled by gi in the multiplication table.
I.e. xj = gi ∗ gj . If xj1 = xj2 , then gi ∗ gj1 = gi ∗ gj2 . Now multiplying by
g−1
i on the left we see that gj1 = gj2 . Consequently j1 = j2. Therefore

every row of the multiplication table contains every element
of G exactly once

a similar argument shows that

every column of the multiplication table contains every ele-
ment of G exactly once

A table satisfying these two properties is called a Latin Square.

Definition 1.5: A latin square of side n is an n by n array
in which each cell contains a single element form an n-element set
S = {s1, s2, . . . , sn}, such that each element occurs in each row exactly
once. It is in standard form with respect to the sequence s1, s2, . . . , sn
if the elements in the first row and first column are occur in the order
of this sequence.



The multiplication table of a group (G, ∗), where G = {e, g1, g2, . . . , gn−1}
is a latin square of side n in standard form with respect to the sequence

e, g1, g2, . . . , gn−1.

The converse is not true. That is not every latin square in standard form
is the multiplication table of a group. This is because the multiplication
represented by a latin square need not be associative.

Example 1.2: A latin square of side 6 in standard form with respect
to the sequence e, g1, g2, g3, g4, g5.

e g1 g2 g3 g4 g5

g1 e g3 g4 g5 g2

g2 g3 e g5 g1 g4

g3 g4 g5 e g2 g1

g4 g5 g1 g2 e g3

g5 g2 g4 g1 g3 e

The above latin square is not the multiplication table of a group, because
for this square:

(g1 ∗ g2) ∗ g3 = g3 ∗ g3 = e

but

g1 ∗ (g2 ∗ g3) = g1 ∗ g5 = g2

1.2.1 Exercises

1. Find all Latin squares of side 4 in standard form with respect to the
sequence 1, 2, 3, 4. For each square found determine whether or not it
is the multiplication table of a group.

2. If (G, ∗) is a finite group, prove that, given x ∈ G, that there is a
positive integer n such that xn = e. The smallest such integer is
called the order of x and we write |x| = n.

3. Let G be a finite set and let ∗ be an associative binary operation on
G satisfying for all a, b, c ∈ G

(i) if a ∗ b = a ∗ c, then b = c; and

(ii) if b ∗ a = c ∗ a, then b = c.



Then (G, ∗) must be a group. Also provide a counter example that
shows that this is false if G is infinite.

4. Show that the Latin Square

e g1 g2 g3 g4 g5 g6

g1 e g3 g5 g6 g2 g4

g2 g3 e g4 g1 g6 g5

g3 g2 g1 g6 g5 g4 e
g4 g5 g6 g2 e g3 g1

g5 g6 g4 e g2 g1 g3

g6 g4 g5 g1 g3 e g2

is not the multiplication table of a group.

5.
Definition 1.6: A group (G, ∗) is abelian if a ∗ b = b ∗ a for all
elements a, b ∈ G.

(a) Let (G, ∗) be a group in which the square of every element is the
identity. Show that G is abelian.

(b) Prove that a group (G, ∗) is abelian if and only if f : G → G
defined by f(x) = x−1 is a homomorphism.



Subgroup 

In mathematics, group theory is one of the most important branches, where we learn about 

different algebra concepts, such as groups, subgroups, cyclic groups, and so on. As we know, 

a group is a combination of a set and a binary operation that satisfies a set of axioms, such 

as closure, associative, identity and inverse of elements. A subgroup is defined as a subset of 

a group that follows all necessary conditions to be a group. Let’s understand the 

mathematical definition of a subgroup here. 

 Definition 

Let (G, ⋆) be a group and H be a non-empty subset of G, such that (H, ⋆) is a group then, “H” 

is called a subgroup of G. 

That means H also forms a group under a binary operation, i.e., (H, ⋆) is a group. 

Also, any subset of a group G is called a complex of G. 

 

Below are some important points about subgroups. 

• A subset H of a group G is a subgroup of G, if H itself is a group under the operation 

in G. 

• A subgroup of a group consisting of only the identity element, i.e., {e} is called the 

trivial subgroup. 

• A subgroup H of a group G, a proper subset of G, i.e., H ≠ G is called the proper 

subgroup and is represented by H < G. This can be read as “H is a proper subgroup of 

G”. 

• If H is a subgroup of G, then G may be called an over group of H in some cases. 

Theorems on Subgroups 

Theorem 1: 

H is a subgroup of G. Prove that the identity element of H is equal to the identity element in 

G. 

Proof: 

Given that H is a subgroup of G. 

https://byjus.com/maths/closure-property/
https://byjus.com/maths/associative-property/


Let us assume that e and e’ be the two identity elements in H and G, respectively. 

Let a ∈ H ⇒ a ∈ G [since H is a subset of G] 

Identity element in group H = e 

Thus, a ⋆ e = e ⋆ a = a…..(1) 

Identity element in group G = e 

Therefore, a ⋆ e’ = e’ ⋆ a = a…..(2) 

From (1) and (2), 

a ⋆ e = a ⋆ e’ 

⇒ e = e’ 

That means, the identity element in H is equal to the identity element in G. 

Hence proved. 

Theorem 2: 

H is a subgroup of G. The inverse of any element in H is equal to the inverse of the same 

element in G. 

Proof: 

Given that H is a subgroup of G. 

Consider a ∈ H ⇒ a ∈ G 

Let us assume that b and c are two inverse elements of a in H and G respectively. 

Let b be the inverse element of a in H. 

Then, a ⋆ b = b ⋆ a = e….(1) 

Let c be the inverse element of a in G. 

Then, a ⋆ c = c ⋆ a = e….(2) 

From (1) and (2), 

a ⋆ b = a ⋆ c 

⇒ b = c 

That means the inverse element of a in H is equal to the inverse element of a in G. 

Hence proved. 

 

 

 

 



Difference between Groups and Subgroups 

The below table illustrates a few differences between groups and subgroups. 

Group Subgroup 

A group is a set combined with a binary operation, such 

that it connects any two elements of a set to produce a 

third element, provided certain axioms are followed. 

A subgroup is a subset of a group. 

H is a subgroup of a group G if it is a 

subset of G, and follows all axioms that 

are required to form a group. 

Groups satisfy the following laws: 

• Closure 

• Associative 

• Identity element 

• Inverse law 

Subgroups also satisfy the following laws: 

• Closure 

• Associative 

• Identity element 

• Inverse law 

The number of elements of a finite group is called the 

order of a group. 

A subgroup is also a group, and the order 

of a subgroup is less than the order of a 

group. 

Properties of Subgroups 

We can also prove the following statements using the properties of groups and subgroups. 

1. Let H be any subgroup of G, such that H-1 = H and HH = H. 

2. H is a non-empty complex of a group G. The necessary and sufficient condition for H to be a 

subgroup of G is: a, b ∈ H ⇒ ab-1 ∈ H, where b-1 is the inverse of b in G. 

3. H is a subgroup of G if and only if HH-1 = H. 

4. If H and K are two subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. 

5. If H and K are two subgroups of a group G, then H ⋂ K is a subgroup of G. 

6. The union of two subgroups of a group is a subgroup, if and only if one is contained in the other. (or) 

If H and G are two subgroups of G, then H U K is a subgroup of G, if and only if H ⊆ K or K ⊆ H. 

What makes a subset a subgroup? 

A subset of a group is said to be a subgroup if it holds all group axioms, i.e. associativity, 

closure, inverse, and identity law under the binary operation of the group. 

How many subgroups can a group have? 

The number of subgroups of a group can be determined based on the order of a group. 

 



Subgroups

Definition:  A subset H of a group G is a subgroup of G if H is itself a group under the
operation in G.

Note:  Every group G has at least two subgroups: G itself and the subgroup {e},
containing only the identity element.  All other subgroups are said to be proper
subgroups.

Examples
1.  GL(n,R), the set of invertible 

† 

n ¥ n  matrices with real entries is a group under matrix
multiplication.  We denote by SL(n,R) the set of 

† 

n ¥ n  matrices with real entries whose
determinant is equal to 1. SL(n,R) is a proper subgroup of GL(n,R) .  (GL(n,R), is called
the general linear group and SL(n,R) the special linear group.)

2.  In the group 

† 

D4 , the group of symmetries of the square, the subset  

† 

{e,r,r2 ,r 3} forms a

proper subgroup, where r is the transformation defined by rotating 

† 

p
2

 units about the z-

axis.

3.  In 

† 

Z9 under the operation +, the subset {0, 3, 6} forms a proper subgroup.

Problem 1:  Find two different proper subgroups of 

† 

S3.

We will prove the following two theorems in class:
Theorem:  Let H be a nonempty subset of a group G.  H is a subgroup of G iff

(i)  H is closed under the operation in G  and
(ii) every element in H has an inverse in H.

For finite subsets, the situation is even simpler:

Theorem:  Let H be a nonempty finite subset of a group G.  H is a subgroup of G iff H is
closed under the operation in G .

Problem 2: Let H and K be subgroups of a group G.
(a) Prove that 

† 

H « K  is a subgroup of G.
(b) Show that 

† 

H » K  need not be a subgroup

† 

multiples of n.   It is easy to check that 

† 

Hn  is a subgroup of Z.   Can you identify the
subgroup 

† 

Hn « H m?  Try it for 

† 

H6 « H9 .

Example:  Let Z be the group of integers under addition.  Define  H  to be the set of all



Note that the proof of part (a) of Problem 2 can be extended to prove that the intersection
of any number of subgroups of G, finite or infinite, is again a subgroup.

Cyclic Groups and Subgroups

We can always construct a subset of a group G as follows:
Choose any element a in G.  Define   

† 

a ={an | n Œ Z}, i.e. 

† 

a  is the set consisting of all
powers of a.

Problem 3:   Prove that 

† 

a  is a subgroup of G.

Definition: 

† 

a  is called the cyclic subgroup generated by a.  If 

† 

a  = G, then we say that
G is a cyclic group.  It is clear that cyclic groups are abelian.

For the next result, we need to recall that two integers a and n are relatively prime if and
only if gcd(a, n)=1.  We have proved that if gcd(a, n)=1, then there are integers x  and y
such that 

† 

ax + by =1.  The converse of this statement is also true:

Theorem:  Let a and n be integers.  Then gcd(a, n)=1 if and only if there are integers x
and y  such that 

† 

ax + by =1.

Problem 4:  (a) Let   

† 

Un ={a Œ Zn |  gcd(a,n)=1}.  Prove that 

† 

Un  is a group under
multiplication modulo n.  (

† 

Un  is called the group of units in 

† 

Zn .)
(b)  Determine whether or not 

† 

Un  is cyclic for n= 7, 8, 9, 15.

We will prove the following in class.
Theorem:  Let G be a group and 

† 

a Œ G .
(1)  If a has infinite order, then 

† 

a  is an infinite subgroup consisting of the
distinct elements 

† 

ak  with 

† 

k Œ Z .
(2) If a has finite order n, then 

† 

a  is a subgroup of order n and

  

† 

a ={e = a0,a1,a2 ,...,an-1}.

Theorem:  Every subgroup of a cyclic group is cyclic.

† 

† 

† † 

† 

† † 


